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13.2 Correlation and Autocorrelation Using
the FFT
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Correlation is the close mathematical cousin of convolution. It is in some
ways simpler, however, because the two functions that go into a correlation are no
as conceptually distinct as were the data and response functions that entered in
convolution. Rather, in correlation, the functions are represented by different, but
generally similar, data sets. We investigate their “correlation,” by comparing them
both directly superposed, and with one of them shifted left or right.

We have already defined in equation (12.0.10) the correlation between two
continuous functiong(¢) andh(t), which is denoted Cofy, h), and is a function
of lag t. We will occasionally show this time dependence explicitly, with the rather
awkward notation Cofy, h)(t). The correlation will be large at some value dfthe
first function () is a close copy of the second)ut lags itin time by, i.e., if the first
function is shifted to the right of the second. Likewise, the correlation will be large
for some negative value off the first functionleadsthe second, i.e., is shifted to the
left of the second. The relation that holds when the two functions are interchanged i
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Corr(g, h)(t) = Corr(h, g)(—t) (13.2.])

The discrete correlation of two sampled functians and h;, each periodic
with period NV, is defined by

N-1
Corr(g, h); = Gj+khi (13.2.2
k=0
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The discrete correlation theorem says that this discrete correlation of two real
functionsg andh is one member of the discrete Fourier transform pair
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Corr(g, h); <= GiHi* (13.2.3
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whereG), and Hy, are the discrete Fourier transformsggfandh ;, and the asterisk
denotes complex conjugation. This theorem makes the same presumptions about t
functions as those encountered for the discrete convolution theorem.

We can compute correlations using the FFT as follows: FFT the two data sets,
multiply one resulting transform by the complex conjugate of the other, and inverse
transform the product. The result (callsit) will formally be a complex vector
of length N. However, it will turn out to have all its imaginary parts zero since
the original data sets were both real. The components; cdre the values of the
correlation at different lags, with positive and negative lags stored in the by now
familiar wrap-around order: The correlation at zero lag isnthe first component;
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the correlation at lag 1 is in;, the second component; the correlation at ap
is in ry_1, the last component; etc.

Just as in the case of convolution we have to consider end effects, since our
data will not, in general, be periodic as intended by the correlation theorem. Here
again, we can use zero padding. If you are interested in the correlation for lags as

large as+K, then you must append a buffer zoneofzeros at the end of both
input data sets. If you want all possible lags fréfndata points (not a usual thing),

then you will need to pad the data with an equal number of zeros; this is the extrem

case. So here is the program:

#include "nrutil.h"

void correl(float datal[], float data2[], unsigned long n, float ans[])
Computes the correlation of two real data sets datal[1..n] and data2[1..n] (including any
user-supplied zero padding). n MUST be an integer power of two. The answer is returned as
the first n points in ans[1..2*n] stored in wrap-around order, i.e., correlations at increasingly
negative lags are in ans [n] on down to ans [n/2+1], while correlations at increasingly positive
lags are in ans [1] (zero lag) on up to ans [n/2]. Note that ans must be supplied in the calling
program with length at least 2*n, since it is also used as working space. Sign convention of
this routine: if datal lags data2, i.e., is shifted to the right of it, then ans will show a peak
at positive lags.

{
void realft(float datal]l, unsigned long n, int isign);
void twofft(float datal[]l, float data2[], float ffti[], float fft2[],
unsigned long n);
unsigned long no2,ij;
float dum,*fft;
fft=vector(1l,n<<1);
twofft(datal,data2,fft,ans,n); Transform both data vectors at once.
no2=n>>1; Normalization for inverse FFT.
for (i=2;i<=n+2;i+=2) {
ans[i-1]=(fft[i-1]*(dum=ans[i-1])+fft[i]*ans[i])/no2; Multiply to find
ans[i]=(fft[i]*dum-fft[i-1]*ans[i]) /no2; FFT of their cor-
} relation.
ans[2]=ans[n+1]; Pack first and last into one element.
realft(ans,n,-1); Inverse transform gives correlation.
free_vector(fft,1,n<<1);
}

As in convlv, it would be better to substitute two callstealft for the one

call to twofft, if datal anddata2 have very different magnitudes, to minimize

roundoff error.
The discrete autocorrelation of a sampled functiory; is just the discrete

correlation of the function with itself. Obviously this is always symmetric with

respect to positive and negative lags. Feel free to use the above rouvtinel
to obtain autocorrelations, simply calling it with the samrweta vector in both
arguments. If the inefficiency bothers you, routirea1ft can, of course, be used
to transform thedata vector instead.

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §13-2.
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13.3 Optimal (Wiener) Filtering with the FFT

There are a number of other tasks in numerical processing that are routinely
handled with Fourier techniques. One of these is filtering for the removal of noise
from a “corrupted” signal. The particular situation we consider is this: There is some
underlying, uncorrupted signal(t) that we want to measure. The measurement
process is imperfect, however, and what comes out of our measurement device is i
corrupted signat(t). The signak(t) may be less than perfect in either or both of
two respects. First, the apparatus may not have a perfect “delta-function” respons
so that the true signail(t) is convolved with (smeared out by) some known response
function r(t) to give a smeared signalt),

dny

s(t) = / r(t—7)u(r) dr or S(f)=R(f)U(S) (13.3.)
where S, R, U are the Fourier transforms of, r, u, respectively. Second, the
measured signai(t) may contain an additional component of noige),

c(t) = s(t) + n(t) (13.3.2

We already know how to deconvolve the effects of the response funciion
the absence of any nois¢l@3.1); we just divide”'(f) by R(f) to get a deconvolved
signal. We now want to treat the analogous problem when noise is present. Ou
task is to find theptimal filter, ¢(¢) or ®(f), which, when applied to the measured
signale(t) or C(f), and then deconvolved by(t) or R(f), produces a signal(t)
or U(f) that is as close as possible to the uncorrupted sigftalor U(f). In other
words we will estimate the true signéal by
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In what sense idJ to be close toU? We ask that they belose in the
least-square sense
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/ a(t) — u(t))? dt:/ ‘U(f)—U(f)’ df isminimized. (13.3.4
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Substituting equations (13.3.3) and (13.3.2), the right-hand side of (13.3.4) become
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The signal S and the noiseN are uncorrelated, so their cross product, when
integrated over frequencf, gave zero. (This is practically tidefinition of what we
mean by noise!) Obviously (13.3.5) will be a minimum if and only if the integrand
is minimized with respect t@(f) at every value off. Let us search for such a



